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1 Review of the de Rham-Witt complex
Setup: X is a smooth proper variety over a perfect field k of characteristic p. Let W = W (k),
σ : W → W the Witt vector Frobenius, and K = FracW . The de Rham-Witt complex of
X/k, first constructed by Illusie in 1979, is designed to lift the de Rham complex Ω∗X/k to
characteristic 0, and thereby to compute crystalline cohomology. It is defined as the initial
object in a rather complicated category. Rather than giving its full definition, I will just recall
what kinds of structure it has, and some of the key conditions we impose. It contains the data:

...

R
����

...

R
����

W2OX d //

R
����

W2Ω1
X

d //

R
����

· · ·

W1OX d //W1Ω1
X

d // · · ·

Here eachWnΩi
X is a sheaf ofWnOX-modules, withWnk-linear differentials and vertical quotient

maps. (The bottom row is just the de Rham complex of X, and the leftmost column is the
sheaf of Witt vectors of OX .) Additionally, each row has a multiplication map making it a
cdga. Finally, each column has maps F going down and V going up, satisfying the following
relations:

(a) FV = V F = p,

(b) dF = pFd, V d = pdV , FdV = d,

(c) F (aω) = σ(a)F (ω) and V (aω) = σ−1(a)V (ω) for a ∈ W ,
∗Notes for a virtual talk in Berkeley’s student arithmetic geometry seminar. Main references: Illusie-Raynaud,

“Les suites spectrales associées au complexe de de Rham-Witt”, and Illusie, “Complexe de de Rham-Witt et
cohomologie cristalline”.
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and various others.

The complex WΩ∗X is defined as lim←WnΩ∗X . The F, V, and d operators and the multipli-
cation map pass to the inverse limit, and they have the same relations as above. Given WΩ∗X
with all of these operators, we can recover WnΩ∗X as its quotient by the images of V n and dV n.
In practice, we pass betweenWΩ∗X and (WnΩ∗X)n more or less freely, but one must be somewhat
cautious about what operations do and don’t commute with the limit.

Remark: Under our smoothness hypotheses, WΩ∗X turns out to be p-torsion-free. Then each of
the relations in (b) above is equivalent to saying that the σ-semilinear map ϕ defined by piF on
WΩi commutes with d. This is useful because it means the operator ϕ will pass to everything
in the next section, including crystalline cohomology, and all of the maps that come up will be
compatible with ϕ.

2 The slope and conjugate spectral sequences
The most fundamental fact about the de Rham-Witt complex is as follows:

Theorem: The (hyper)cohomology of the de Rham-Witt complex computes crystalline coho-
mology. More precisely, we have isomorphisms

H∗cris(X/Wn) ∼= H∗(WnΩ∗X) := R∗Γ(WnΩ∗X)

H∗cris(X/W ) ∼= H∗(WΩ∗X) := R∗Γ(WΩ∗X).

Given a complex of sheaves K∗ equipped with a filtration, there is a spectral sequence allowing
us to compute its cohomology in terms of the cohomology of the associated graded objects.
There are two natural choices of filtration here, and both give interesting spectral sequences.
(I’ll discuss the spectral sequences for WnΩ∗X ; the corresponding statements for WΩ∗X follow if
we are careful about Ri lim’s.)

The slope spectral sequence comes from the stupid filtration σ≥iWnΩ∗X ,

σ≥iWnΩ∗X� _

��

· · · // 0 //

��

WnΩi
X

//WnΩi+1
X

// · · ·

WnΩ∗X · · · //WnΩi−1
X

//WnΩi
X

//WnΩi+1
X

// · · ·

with graded pieces griWnΩ∗X = WnΩi
X [−i].

It has the form:
′
nE

i,j
1 = Hj(WnΩi

X) =⇒ H i+j(WnΩ∗X) = H i+j
cris (X/Wn) or

′Ei,j
1 = Hj(WΩi

X) =⇒ H i+j(WΩ∗X) = H i+j
cris (X/W )

(Notation: we will always use ′E to refer to the first spectral sequence and ′′E for the second.
The left subscript n indicates that we are working over Wn instead of W .)
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The conjugate spectral sequence comes from the canonical filtration τ≤iWnΩ∗X ,

τ≤iWnΩ∗X� _

��

· · · //WnΩi−1
X

// ker(di) //
� _

��

0 //

��

· · ·

WnΩ∗X · · · //WnΩi−1
X

//WnΩi
X

//WnΩi+1
X

// · · ·

with graded pieces

griWnΩ∗X = (WnΩi−1
X / ker(di−1)

di−1

↪→ ker(di))
q.i.
' H i(WnΩ∗X)[−i]

Here the ′′E1 page is not canonical, but the ′′E2 page is:

′′
nE

ij
2 = H i(X,H j(WnΩ∗X)) =⇒ H i+j(WnΩ∗X) = H i+j

cris (X/Wn), or
′′Eij

2 = H i(X,H j(WΩ∗X)) =⇒ H i+j(WΩ∗X) = H i+j
cris (X/W ),

where H j denotes the cohomology sheaves—literally cocycles mod coboundaries.

To make this concrete, suppose we have a sufficiently nice (i.e. Cartan-Eilenberg) resolution
I∗∗ of the complex WnΩi

X . This is a double complex of sheaves of Wn-modules of the form

...
...

... ···

0 // I01

OO

// I11

OO

// I21

OO

// · · ·

0 // I00

OO

// I10

OO

// I20

OO

// · · ·

0 //WnΩ0
X

OO

//WnΩ1
X

OO

//WnΩ2
X

OO

// · · ·

0

OO

0

OO

0

OO

where each I ij is injective and each column is a resolution of WnΩi
X .

Then WnΩ∗X is quasi-isomorphic to the total complex Tot(I∗∗). In particular, we can com-
pute its cohomology as the cohomology of Tot(Γ(I∗∗)). This in turn can be computed by
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running a spectral sequence whose E0 page is the following (non-canonical) double complex:

...
...

... ···

0 // Γ(I02)

OO

// Γ(I12)

OO

// Γ(I22)

OO

// · · ·

0 // Γ(I01)

OO

// Γ(I11)

OO

// Γ(I21)

OO

// · · ·

0 // Γ(I00)

OO

// Γ(I10)

OO

// Γ(I20)

OO

// · · ·

0

OO

0

OO

0

OO

But given a double complex, there are two different associated spectral sequences. Starting with
vertical maps leads to the slope spectral sequence, and starting with horizontal maps leads to
the conjugate spectral sequence.

Another interpretation of the conjugate spectral sequence:

I lied earlier: the most fundamental fact about about WΩ∗X is not that its hypercohomology
computes crystalline cohomology. Rather, the global sections functor Γ : (X/W )cris → Sh(∗)
factors through Sh(XZar):

(X/W )cris
u∗−→ Sh(XZar)

Γ−→ Sh(∗)

and therefore the cohomology functorRΓ : D((X/W )cris)→ D(Sh(∗)) factors throughD(Sh(XZar)):

D((X/W )cris)
Ru∗−→ D(Sh(XZar))

RΓ−→ D(Sh(∗)).

Crystalline cohomology is defined as RΓ(OX/W ). The most fundamental fact about the de
Rham-Witt complex is that it’s a representative of the derived Zariski sheaf Ru∗(OX/W ) as an
honest complex of sheaves.

It follows from this that RΓ(WΩ∗X) equals crystalline cohomology, as RΓ ◦ Ru∗ = RΓ. The
conjugate spectral sequence appears here as the Leray spectral sequence for the composition of
two derived functors. In particular, this shows that the conjugate spectral sequence is interest-
ing to study even if a priori we are only interested in crystalline cohomology and not in the de
Rham-Witt complex.

Let’s compare our two spectral sequences (over W ):
′Ei,j

1 = Hj(WΩi
X) =⇒ H i+j

cris (X/W ),
′′Ei,j

2 = H i(X,H j(WΩ∗X)) =⇒ H i+j
cris (X/W )

Note that there are three differences:
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• The first starts at E1 and the second at E2.

• The roles of i and j get switched (because of starting with horizontal vs. vertical maps).

• The first involves the sheaf cohomology of WΩi
X itself, whereas the second involves the

sheaf cohomology of the cohomology sheaves of the complex WΩ∗X .

3 Example
For a typical example of what the two spectral sequences look like, let X be a supersingular
abelian surface. Then the ′E1 page of the slope spectral sequence looks like:

k[[x]] �
� // k[[x]]⊕W⊕4 W

W⊕4 W⊕6 0

W 0 0

The ′′E2 page of the spectral sequence looks (I think) like:

0 k[[x]] W

0 W⊕6 W⊕4

W W⊕4 k[[x]]

'

ZZ

In both cases, all maps are zero except for the indicated maps on torsion, and the spectral
sequences degenerate on the following page with no torsion.

4 Recap of Illusie’s results
Proposition (Illusie): For all i, j, and n, the Wn-module Hj(WnΩi

X) has finite length.

Remark: This result is needed to prove that Hj(WΩi
X) = lim←nH

j(WnΩi
X), so that the slope

spectral sequence over W is the inverse limit of the ones over Wn. Note that in our example,
some Hj(WnΩi

X) have infinitely much p-torsion, but only finitely much of this appears over any
given Wn.

Before stating Illusie’s main result, let me briefly explain the “slope” terminology. The un-
divided Frobenius ϕ mentioned earlier induces operators ϕ on each Hj(WΩi), and therefore
on Hj(WΩi)/ tors. These are Frobenius-semilinear maps on finite free W -modules. Any such
object has a collection of slopes, which are the semilinear analogues of p-adic valuations of
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eigenvalues. Since the divided Frobenius F satisfies FV = p, with V topologically nilpotent, it
must have all its slopes in [0, 1). It follows that ϕ = piF on Hj(WΩi

X) has slopes in [i, i + 1).
In fact this discussion implies the theorem:

Theorem (Illusie): The slope spectral sequence degenerates at ′E1 mod torsion (i.e. after apply-
ing ⊗WK), and the i-th graded piece of the induced filtration is the part of H∗cris(X/W )⊗W K
with slope in [i, i+ 1).

Proof: All ′Ei,j
1 have ϕ operators with slopes in [i, i + 1), and all differentials respect ϕ. It

follows that the ′Ei,j
n for n ≥ 1 inherit ϕ, also with slopes in [i, i+ 1), and also commuting with

differentials. But the differentials on page ′E1 and beyond go between modules with no slopes
in common, so they’re 0 mod torsion.

5 Results of Illusie-Raynaud
Lemma: The ′′nE2 page of the conjugate spectral sequence is valued in finite-lengthWn-modules.

Proof: For each n, we have a so-called higher Cartier isomorphism

C−n : WnΩi
X
∼→H i(WnΩ∗X),

which is a σn-semilinear isomorphism of sheaves of Wn-modules on X. (In the case n = 1, this
is the usual Cartier isomorphism.) Taking cohomology on both sides gives us σn-semilinear
isomorphisms

′
nE

ij
1 = Hj(X,WnΩi

X) ∼= Hj(X,H i(WnΩ∗X)) = ′′
nE

ji
2 .

Since the left side has finite length, the right side does too.

Warning: These isomorphisms are not compatible as n varies, so we cannot get an isomor-
phism of objects over W by passing to the limit.

Main theorem: The conjugate spectral sequence degenerates at ′′E2 mod torsion (i.e. after ap-
plying ⊗WK), and the j-th graded piece of the induced filtration is the part of H∗(X/W )⊗WK
with slope in (j − 1, j].

Sketch of proof: Recall that in Illusie’s proof of degeneration, the key idea was as follows.
The object ′Eij

1 = Hj(WΩi
X) comes with F and V operators, such that ϕ = piF is compatible

with the maps in the spectral sequence and has slopes in [i, i + 1). Since these intervals are
disjoint for different i, it followed that all maps in the spectral sequence (mod torsion) vanish.

We want to imitate this for ′′Eij
2 = H i(H j(WΩ∗X)). The problem is that neither F nor

V induces a well-defined operator on H j(WΩ∗X): F preserves the cocycles ZWΩi
X but not

the coboundaries BWΩi
X , and V preserves coboundaries but not cocycles. Instead we de-

fine F ′ = pF : WΩi → WΩi and V ′ = F−1|ZWΩi
X
. These maps preserve both cocycles and

coboundaries, so they induce maps on H j(WΩ∗X) and thus H i(H j(WΩ∗X)). These have the
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right semilinearity properties, and they satisfy F ′V ′ = V ′F ′ = p.

The operator F ′ = pF is topologically nilpotent on WΩi, since p is. It follows that F ′ is
topologically nilpotent (albeit no longer divisible by p) as an operator on H j(WΩ∗X), and also
on H i(H j(WΩ∗X))/ tors. Then the slopes of F ′ are in (0, 1], so the slopes of ϕ = pjF = pj−1F ′

are in (j − 1, j]. From here the proof concludes as in Illusie.

So what’s the catch? This is a 140-page paper, right?

Showing that F ′ and V ′ give well-defined maps on H j(WΩ∗X) takes some work, but not
that much. But the main issue is that in order to talk about slopes, we need to know that
H i(H j(WΩ∗X))/ tors is a finite free W -module. Illusie-Raynaud states this as another part
of their main theorem, along with saying that H i(H j(WΩ∗X)) has bounded p-power torsion.
Proving it requires a precise understanding of what kind of object H i(H j(WΩ∗X)) is.

6 Graded R-modules
Let R denote the noncommutative graded W -algebra generated by elements F and V in degree
0 and d in degree 1, subject to all the usual relations:

• FV = V F = p, d2 = 0,

• dF = pFd, V d = pdV , FdV = d,

• F (aω) = σ(a)F (ω) and V (aω) = σ−1(a)V (ω) for a ∈ W .

This ring is concentrated in degrees 0 and 1. It is a free W -module with basis:

{Fm, V n, Fmd, dV n : m ≥ 0, n > 0}.
Any complex of W -modules with suitable F and V operators is then a (graded left) R-module.
Given such a module M∗, we define

WnM
i = M i/(V nM i, dV nM i−1).

Illusie-Raynaud then proves a wonderful structure theorem for sufficiently “nice” R-modules:

Proposition: Suppose M∗ is a graded left R-module, concentrated in finitely many degrees,
such that M∗ = lim←nWnM

∗ and each WnM
i is a finite-length W -module. Then M∗ has a

finite filtration with quotients of the following types:

1. Concentrated in one degree:

(a) finite-length torsion W -modules,
(b) finite free W -modules,
(c) kσ[[V ]], with F = 0,

2. “dominoes,” denoted Ui[−n], concentrated in degrees n and n+ 1.

In particular, each ′′Eij
2 = H i(H j(WΩ∗X)) satisfies these hypotheses, so one can use the propo-

sition to prove finiteness properties about it.
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7 Applications
Theorem (Rudakov-Shafarevich) A K3 surface X over an arbitrary field k has no global vector
fields. This is easy in characteristic 0. In the characteristic-p case, they use Illusie-Raynaud’s
theory of dominoes to study various differentials in the Hodge-de Rham, slope, and conjugate
spectral sequences, and eventually show that H0(X,TX) ∼= H0(X,Ω1

X) = 0.

Ekedahl’s thesis uses some further study of the category of R-modules to show how one can
prove Künneth and duality formulas for crystalline cohomology using the de Rham-Witt com-
plex.

Katz (“Crystalline cohomology, Dieudonné modules, and Jacobi sums”, 1981) gives a formula
for Gauss sums using the degeneration of the conjugate spectral sequence for Artin-Schreier
covers of P1.
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